Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
De_Vita, R; Espinal, X; Laycock, P; Shadura, O (Ed.)The Large Hadron Collider (LHC) experiments distribute data by leveraging a diverse array of National Research and Education Networks (NRENs), where experiment data management systems treat networks as a “blackbox” resource. After the High Luminosity upgrade, the Compact Muon Solenoid (CMS) experiment alone will produce roughly 0.5 exabytes of data per year. NREN Networks are a critical part of the success of CMS and other LHC experiments. However, during data movement, NRENs are unaware of data priorities, importance, or need for quality of service, and this poses a challenge for operators to coordinate the movement of data and have predictable data flows across multi-domain networks. The overarching goal of SENSE (The Software-defined network for End-to-end Networked Science at Exascale) is to enable National Labs and universities to request and provision end-to-end intelligent network services for their application workflows leveraging SDN (Software-Defined Networking) capabilities. This work aims to allow LHC Experiments and Rucio, the data management software used by CMS Experiment, to allocate and prioritize certain data transfers over the wide area network. In this paper, we will present the current progress of the integration of SENSE, Multi-domain end-to-end SDN Orchestration with QoS (Quality of Service) capabilities, with Rucio, the data management software used by CMS Experiment.more » « less
-
Abstract Many measurements at the LHC require efficient identification of heavy-flavour jets, i.e. jets originating from bottom (b) or charm (c) quarks. An overview of the algorithms used to identify c jets is described and a novel method to calibrate them is presented. This new method adjusts the entire distributions of the outputs obtained when the algorithms are applied to jets of different flavours. It is based on an iterative approach exploiting three distinct control regions that are enriched with either b jets, c jets, or light-flavour and gluon jets. Results are presented in the form of correction factors evaluated using proton-proton collision data with an integrated luminosity of 41.5 fb -1 at √s = 13 TeV, collected by the CMS experiment in 2017. The closure of the method is tested by applying the measured correction factors on simulated data sets and checking the agreement between the adjusted simulation and collision data. Furthermore, a validation is performed by testing the method on pseudodata, which emulate various mismodelling conditions. The calibrated results enable the use of the full distributions of heavy-flavour identification algorithm outputs, e.g. as inputs to machine-learning models. Thus, they are expected to increase the sensitivity of future physics analyses.more » « less
An official website of the United States government
